For Special Gifts visit our ON SALE this Holiday Season!
X
Menu
Health Magnetic Store

Magnetic Therapy Research: Osteoporosis

 

The effect of pulsed electromagnetic fields on osteoporosis at the knee in individuals with spinal cord injury.

Garland DE, Adkins RH, Matsuno NN, Stewart CA.

Rancho Los Amigos Medical Center, Downey, California 90242, USA.

The purpose of this study was to determine the effects of pulsed electromagnetic fields on osteoporotic bone at the knee in individuals with chronic spinal injury. The study consisted of 6 males with complete spinal cord injury at a minimum of 2 years duration. Bone mineral density (BMD) was obtained at both knees at initiation, 3 months, 6 months, and 12 months using dual energy X-ray absorptiometry. In each case, 1 knee was stimulated using The Bone Growth Stimulator Model 3005 from American Medical Electronics, Incorporated and the opposite knee served as the control. Stimulation ceased at 6 months. At 3 months BMD increased in the stimulated knees 5.1% and declined in the control knees 6.6% (p < .05 and p < .02, respectively). By 6 months the BMD returned to near baseline values and at 12 months both knees had lost bone at a similar rate to 2.4% below baseline for the stimulated knee and 3.6% below baseline for the control. There were larger effects closer to the site of stimulation. While the stimulation appeared useful in retarding osteoporosis, the unexpected exaggerated decline in the control knees and reversal at 6 months suggests underlying mechanisms are more complex than originally anticipated. The authors believe a local as well as a systemic response was created.

J Spinal Cord Med. 1999 Winter;22(4):239-45.

Return to top

 

Effect of pulsed electromagnetic fields on bone formation and bone loss during limb lengthening.

Eyres KS, Saleh M, Kanis JA.

WHO Collaborating Centre for Metabolic Bone Disease, University of Sheffield Medical School, UK.

We examined the effect of pulsed electromagnetic fields (PEMFs) on bone formation and disuse osteoporosis sustained during limb lengthening in a double-blind study. Seven males (mean age 13 years, range 11-19 years) and six females (mean age 12 years, range 9-19 years) were randomly allocated to receive either an active or an inactive PEMF coil. Limb lengthening was performed by the Villarubbias technique using either a unilateral or circular frame system. Sequential bone density measurements were made using dual energy X-ray absorptiometry and compared to traditional radiographs. Ten segments (eight tibial and two femoral) in seven patients were lengthened under the influence of active coils and eight segments (six tibial and two femoral) in six patients using inactive coils. There was no difference in the rate nor the amount of new bone formed at the site of distraction between the two groups. Bone loss in the segments of bone distal to the lengthening sites was observed in both groups but was significantly more marked using inactive coils (BMD reduced by 23% +/- SEM 3% and 33% +/- 4% control values after one and two months, respectively; p < 0.0001) than using active coils (BMD reduced by 10% +/- 2% at 2 months). These differences were greater at 12 months after surgery (reduced by 54% +/- 5% and 13% +/- 4%, respectively; p < 0.0001). Stimulation with pulsed electromagnetic fields has no effect on the regenerate bone, but does prevent bone loss adjacent to the distraction gap.

Bone. 1996 Jun;18(6):505-9.

Return to top

 

Effects of pulsed magnetic fields in the therapy of osteoporosis induced by ovariectomy in the rat.

Zati A, Gnudi S, Mongiorgi R, Giardino R, Fini M, Valdre G, Galliani I, Montagnani AM.

Institute Orthopaedic Rizzoli, University of Bologna.

This paper presents preliminary results on the effects of pulsed electromagnetic fields (EMF) in the therapy of post menopausal osteoporosis induced by ovariectomy in female rats aged ten months. In particular, the effects of the intensity of pulsed EMF applied at constant frequency has been studied. Magnetic fields pulsed at 50 Hz were used having a positive sinusoidal wave form with a maximum intensity of 30 and 70 Gauss. Treatment lasting one hour per day for 4 months showed that the pulsed EMF with 30 Gauss of maximum intensity are able to slow down the bone mass loss, keeping it within some 10%; with pulsed EMF with 70 Gauss of maximum intensity, instead, no significant bone mass loss was observed.

Boll Soc Ital Biol Sper. 1993 Jul-Aug;69(7-8):469-75.

Return to top

 

Pulsed electromagnetic fields prevent osteoporosis in an ovariectomized female rat model: a prostaglandin E2-associated process.

Chang K, Chang WH.

Department of Biomedical Engineering, Chung-Yuan Christian University, Chung-Li, Taiwan, Republic of China.

With the use of Helmholtz coils and pulsed electromagnetic field (PEMF) stimulators to generate uniform time varying electromagnetic fields, the effects of extremely low frequency electromagnetic fields on osteoporosis and serum prostaglandin E(2) (PGE(2)) concentration were investigated in bilaterally ovariectomized rats. Thirty-five 3 month old female Sprague-Dawley rats were randomly divided into five different groups: intact (INT), ovariectomy (OVX), aspirin treated (ASP), PEMF stimulation (PEMF + OVX), and PEMF stimulation with aspirin (PEMF + ASP) groups. All rats were subjected to bilateral ovariectomy except those in INT group. Histomorphometric analyses showed that PEMF stimulation augmented and restored proximal tibial metaphyseal trabecular bone mass (increased hard tissue percentage, bone volume percentage, and trabecular number) and architecture (increased trabecular perimeter, trabecular thickness, and decreased trabecular separation) in both PEMF + OVX and PEMF + ASP. Trabecular bone mass of PEMF + OVX rats after PEMF stimulation for 30 days was restored to levels of age matched INT rats. PEMF exposure also attenuated the higher serum PGE(2) concentrations of OVX rats and restored it to levels of INT rats. These experiments demonstrated that extremely low intensity, low frequency, single pulse electromagnetic fields significantly suppressed the trabecular bone loss and restored the trabecular bone structure in bilateral ovariectomized rats. We, therefore, conclude that PEMF may be useful in the prevention of osteoporosis resulting from ovariectomy and that PGE(2) might relate to these preventive effects. Copyright 2003 Wiley-Liss, Inc.

Bioelectromagnetics. 2003 Apr;24(3):189-98.

Return to top

 

Bone density changes in osteoporosis-prone women exposed to pulsed electromagnetic fields (PEMFs).

Tabrah F, Hoffmeier M, Gilbert F Jr, Batkin S, Bassett CA.

University of Hawaii School of Medicine, Straub Clinic and Hospital, Honolulu.

To determine the effect of a 72 Hz pulsating electromagnetic field (PEMF) on bone density of the radii of osteoporosis-prone women, the nondominant forearms of 20 subjects were exposed to PEMF 10 h daily for a period of 12 weeks. Bone density before, during, and after the exposure period was determined by use of a Norland-Cameron bone mineral analyzer. Bone mineral densities of the treated radii measured by single-photon densitometry increased significantly in the immediate area of the field during the exposure period and decreased during the following 36 weeks. A similar but weaker response occurred in the opposite arm, suggesting a "cross-talk" effect on the nontreated radii, from either possible arm proximity during sleep or very weak general field effects. The data suggest that properly applied PEMFs, if scaled for whole-body use, may have clinical application in the prevention and treatment of osteoporosis.

J Bone Miner Res. 1990 May;5(5):437-42.

Return to top

 

Prevention of osteoporosis by pulsed electromagnetic fields.

Rubin CT, McLeod KJ, Lanyon LE.

Musculo-Skeletal Research Laboratory, Department of Orthopaedics, State University of New York, Stony Brook 11794.

Using an animal model, we examined the use of pulsed electromagnetic fields, induced at a physiological frequency and intensity, to prevent the osteoporosis that is concomitant with disuse. By protecting the left ulnae of turkeys from functional loading, we noted a loss of bone of 13.0 per cent compared with the intact contralateral control ulnae over an eight-week experimental period. Using a treatment regimen of one hour per day of pulsed electromagnetic fields, we observed an osteogenic dose-response to induced electrical power, with a maximum osteogenic effect between 0.01 and 0.04 tesla per second. Pulse power levels of more or less than these levels were less effective. The maximum osteogenic response was obtained by a decrease in the level of intracortical remodeling, inhibition of endosteal resorption, and stimulation of both periosteal and endosteal new-bone formation. These data suggest that short daily periods of exposure to appropriate electromagnetic fields can beneficially influence the behavior of the cell populations that are responsible for bone-remodeling, and that there is an effective window of induced electrical power in which bone mass can be controlled in the absence of mechanical loading.

J Bone Joint Surg Am. 1989 Mar;71(3):411-7.

Return to top

Free shipping on
Orders of $58 or More
No code required at checkout
Shop Now
Get Email Updates
Don't miss out any coupons, discounts, offers, videos from our TV show or news. It's free sign-up now!
We respect your privacy. That's why we don't share your information with third parties.